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Preliminaries

1. Reasons for selecting topic

Extension object of complex analysis: holomorphic and micromorphic mappings, analytic sets,

currents, etc, always is one of the problems of complex analysis as well as plurispotential theory.

One of the issues most concerned and researched and considered as the center of plurispotential

theory is subextension of plurisubharmonic functions. Therefore, as well as mentioned issues, we

should put emphasis on examining problems about extension plurisubharmonic functions when

researching problems about plurispotential theory. However, because plurisubharmonic functions

are defined by inequalities then in plurispotential theory, one consider subextension problem for

these functions. In this thesis, we spend most of the content presenting problem of subextension

of unbounded plurisubharmonic function class, as well as m- unbounded subharmonic functions.

Mentioned issues have recently concerned and researched within the last 10 years .

From 1994 to 2004, Cegrell, one of top world experts about pluritential theory, built up op-

erator Monge - Ampre for some unbounded local plurisubharmonic function classes. He brought

out Ep(Ω),Fp(Ω),F(Ω),N (Ω) v E(Ω). Those are different unbounded plurisubharmonic functions

classes in hyperconvex domain Ω ⊂ Cn where operator (ddc.)n can be determined and continu-

ous in decreased sequences. In which E(Ω) is the largest class where operator Monge - Ampre is

defined as a Radon degree. Since then, they started shifting concentration from problems about

subextension to these classes.

In 2003, Cegrell and Zeriahi researched problems about subextension for class F(Ω) a subunit

of class E(Ω). the authors proved that: If Ω b Ω̃ are bounded hyperconvex domain in Cn and

u ∈ F(Ω), then ũ ∈ F(Ω) exists so that ũ ≤ u in Ω, ũ is later called subextension of u from Ω

to Ω̃. The important thing is the authors’ estimation on operator Monge - Ampre mass of (ddcũ)n

and (ddcu)n measures through inequalities
∫̃
Ω

(ddcũ)n ≤
∫
Ω

(ddcu)n. This result can be considered

as the first the resultof researching problems about subextension of unbounded plurisubharmonic

functions. After that, P. H. Hiep, Benelkourchi continues researching this problem for different

function class such as Ep(Ω), Eχ(Ω). Examining problems about subextension in Cegrell classes

with boundary values by Czyż, Hed in 2008. We will present Czyż and Hed’s results further in the

beginning of Overview in this thesis. The throughout topic of this thesis is the relationship between

(ddcũ)n and 1Ω(ddcu)n measures with ũ subextension of u. Most of the authors Cegrell- Zeriahi’s,

P.H.Hiep’s, Benelkourchi’s or Czyż’s and Hed’s results stop at estimating the relationship between

mass total of (ddcũ)n and mass of (ddcu)n. So that, researching subextension of plurisubharmonic
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functions which can control Monge- Ampre measures of subextension of functions and given func-

tions is an open question. In 2014, L. M. Hi, N. X. Hng researched problems about subextension for

class F(Ω, f). The important thing is that they proved equation about Monge-Ampère measures

of subextension of functions and given functions. Therefore, the problem that needs researching is

the extension of results for larger function class, class Eχ(Ω, f)?

The next problem which is concerned and researched in this thesis is establishing subextension

of plurisubharmonic functions in unbounded domain. We know that defining subextension ũ of

u needs solving Monge-Ampre equation. However, solving Monge-Ampère equation in unbounded

domain in Cn is not simple. In 2014,an important result in solving Monge-Ampre equation for

unbounded hyperconvex domain in Cn were proposed by L. M. Hai, N. V. Trao, N. X. Hong. That

gives direction for us to examine the problem about subextension of plurisubharmonic functions in

class F(Ω, f) with Ω unbounded hyperconvex domain. As an application of the mentioned result,

in the next section of the thesis, we study approximation of plurisubharmonic functions by an

increasing sequence of plurisubharmonic functions defined on larger domain.

In chapter 4 of this thesis, we examine subextension for function class m-subharmonic. As we

have known, extending plurisubharmonic functions class is studied by some authors such as: Z.

Blocki, S. Dinew, S. Kolodziej, A. S. Sadullaev, B. I. Abullaev, L. H. Chinh,.... In 2005, Z. Blocki

brought out the definition of function m - subharmonic (SHm(Ω)) and studied the solution of

Hessian equation sole to this class, Then it followed that, in 2012, L. H. Chinh based on the ideas

of Cegrell and brought out function classes E0
m(Ω), Fm(Ω), Em(Ω) subclass of SHm(Ω). These are

unbounded m-subharmonic function classes but in which we can defined complex Hessian operator,

the same to mentioned E0(Ω), F(Ω), E(Ω) of Cegrell. From that, the author proved its existence

of complex m-Hessian operator Hm(u) = (ddcu)m∧βn−m on Em(Ω) function. How do subextension

and initial function control the m-Hessian measures? The study of these questions in this function

remains a problem that need further studies.

The last problem mentioned in this thesis is the equation of complex Monge- Ampre for class

Cegrell N (Ω, f). The equation form is

(ddcu)n = F (u, .)dµ,

. As we have known, the proof of the existence of weak solutions of this equation has been studied

extensively by many authors. The majority of the results above has mentioned the case in which µ

is a measure vanishing on pluripolar sets of Ω. In this paper, we would like to study weak solutions

of Monge- Ampre for an arbitrary measure, in particular, for measures carried by a pluripolar set.

For these reasons, we have chosen the topic: ”Subextension of plurisubharmonic func-

tions and applications”.

2. The importance of the topic

As mentioned above, problems about subextension of plurisubharmonic functions in unbounded

domains with boundary values have only appeared recently. Moreover, creating the connection be-

tween Monge - Ampre measures of subextension of plurisubharmonic function and given function

has hardly been examined, except for the case of the class F(Ω, f). Therefore, extending the prob-

lems in other classes is necessary and worth examining. The case is similar for the researching of m

- subharmonic functions with the control of Hessian Hm(u) = (ddcu)m ∧ βn−m and solving Monge-

Ampre equations to find measures with values on pluripolar sets.

3. The aim of thesis

The aim of the thesis is to examine the subextension of plurisubharmonic functions in the class

Eχ(Ω, f) where Ω is bounded hyperconvex in Cn; class F(Ω, f) with Ω - unbounded hyperconvex
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in Cn and subextensions of m - subharmonic functions for the class Fm(Ω) with Ω being bounded

m- hyperconvex domains in Cn. Moreover, the thesis is also proves the existenceof weak solutions

of the equations of complex Monge - Ampère type in the class N (Ω, f) for arbitrary measures, in

particular, measures carried by pluripolar sets. We prove that problems about subextension in the

classes Eχ(Ω, f), Fm(Ω) with Ω being bounded hyperconvex domain and l m - hyperconvex domain

come into effect. Besides, we also establish the equality between the Monge - Ampre measures of

subextension functions and the given functions. Likewise, we create the existence of subextension

in the class F(Ω, f) when Ω is unbounded hyperconvex domain and the equality of measures is

the same as mentioned above.

4. Study subjects

As we demonstrated in the reason for choosing the topic, the study subject of the thesis is

the subextension of plurisubharmonic functions with boundary values in weighted pluricomplex

energy classes, subextension of plurisubharmonic functions in unbounded hypercomplex and appli-

cations, subextension of m-subharmonic functions and equations of complex MongeAmpre type for

arbitrary measures with conditions which are more general than previous studies of this problem.

Furthermore, in cases we proposed to study, previous techniques and methods of other authors are

not mentioned.

5. The meaning and practice of science thesis

The thesis helps to develop more deeply about the results of subextension of plurisubharmonic

functions, subextension of m-subharmonic functions,weak solutions of equations of complex Monge

- Ampère type for arbitrary measures. Methodically, the thesis helps diversify systems of tools and

techniques of specialized studies, specifically applicated in the topic of the thesis and similar topics.

The thesis is one of the reference documents for Maters and Phd students doing the research.

6. Structure of the thesis

Structure of the thesis is demonstrated, following specific rules for thesis of Hanoi National

University of Education, including beginning , overview- demonstrating history of the problem,

analysis and judgemetn of the study of national and foreign authors realted to the thesis. The

4 remaining chapters of the thesis based on 4 other work, which has been uploaded and become

public.

Chapter 1: Subextension of plurisubharmonic functions with boundary values in weighted pluri-

complex energy classes.

Chapter 2: Subextension of plurisubharmonic functions in unbounded hyperconvex domains and

applications.

Chapter 3: Subextension of m-subharmonic functions.

Chapter 4: Equations of complex Monge-Ampère type for arbitrary measures.

Finally, in the conclusion part, we review the results of his or her own thesis. This is the as-

sertion that the stated idea of the topic of the thesis is true and the results reach the target. As

a result, thesis has a number of contributions for specialized science, has scientific meaning and

applications as mentioned in the beginning part, which is absolutely authentic. Simultaneously,

in Recommendations part, we bravely propose a number of following study ideas to develop the

topic of the thesis. We hope we could receive the attention and share from our colleagues to help

us perfect the results of the research.

7. The location where the topic is discussed

Hanoi National University of Education.



Overview subextension of

plurisubharmonic and Equations of

complex Monge-Ampère type

1. Subextension of plurisubharmonic functions with boundary values in weighted

pluricomplex energy classes

In the pluripotential theory, MongeAmpre operator is a tool served as thecenter and throughout

the development of pluripotential theory. This operator is strongly researched since the second half

of the XX century, in the way of describing subclasses of plurisubharmonic functions (PSH(Ω))

that MongeAmpre operator is still defined as a continuous positive Radon measure on a decreasing

sequence. In 1975, Y. Siu had shown that, (ddcu)n cannot be defined as a regular Borel measure as

plurisubharmonic functions with any u. In 1982, Bedford and Taylor had defined (ddc)n operator

on a class of local bounded plurisubharmonic functions, PSH(Ω) ∩ L∞loc(Ω). Other fundalmental

results about the pluripotential theory related to this problem can be found in documentaries. To

continue the way of extending defined domain of MongeAmpre complex operator mentioned, in

1998, 2004 and 2008, in his work, Cegrell had described many subclasses of PSH(Ω) with Ω be a

bounded hyperconvex domain in Cn, in which E(Ω) is the biggest class that MongeAmpre operator

can still be defined as a Radon measure, simutanuously this operator is continuous on a decreasing

sequence of a plurisulharmonic function. This means that if u ∈ E(Ω) then (ddcu)n exists and if

{uj} ⊂ E(Ω) with uj ↘ u then (ddcuj)
n weakly converges to (ddcu)n. In the beginning of the thesis

we study the problem of the subextension of plurisubharmonic functions with boundary values in

pluricomplex energy classes weighted Eχ(Ω, f).

The problem of subextension of plurisubharmonic functions has been concerned since the 80 of

the previous century. El Mir gave in 1980 an example of a plurisubharmonic function on the unit

bidisc for which the restriction to any smaller bidisc admits no subextension to the whole space. In

1987, Fornaess and Sibony poited out that for a ring domain in C2, there exists a plurisubharmonic

function which admits no subextension inside the hole. In 1988, Bedford and Taylor proved that any

smoothly bounded domain in Cn is a domain of existence of a smooth plurisubharmonic function.

We define the following subclasses of PSH−(Ω) on set Ω is a bounded hyperconvex domain in

Cn:

Definition 1

E0(Ω) =
{
ϕ ∈ PSH−(Ω) ∩ L∞(Ω) : lim

z→∂Ω
ϕ(z) = 0,

∫
Ω

(ddcϕ)n <∞
}
,
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E(Ω) =
{
ϕ ∈ PSH−(Ω) : ∀z0 ∈ Ω,∃ a neighbourhhood U 3 z0,

E0(Ω) 3 ϕj ↘ ϕ on U, sup
j

∫
Ω

(ddcϕj)
n <∞

}
,

F(Ω) =
{
ϕ ∈ PSH−(Ω) : ∃ E0(Ω) 3 ϕj ↘ ϕ, sup

j

∫
Ω

(ddcϕj)
n <∞

}
,

Fa(Ω) =
{
ϕ ∈ F(Ω) : (ddcϕ)n(E) = 0,∀E ⊂ Ω pluripola set

}
,

now for each p > 0, put

Ep(Ω) =
{
ϕ ∈ PSH−(Ω) : ∃E0(Ω) 3 ϕj ↘ ϕ, sup

j

∫
Ω

(−ϕj)p(ddcϕj)n <∞
}
.

Remark: The following inclusions are obvious E0(Ω) ⊂ F(Ω) ⊂ E(Ω).

On bounded hyperconvex domains in Cn, Cegrell and Zeriahi investigated the subextension

problem for the class F(Ω). In 2013, the authors proved that if Ω b Ω̃ are bounded hyperconvex

domains in Cn and u ∈ F(Ω), then there exists ũ ∈ F(Ω̃) such that ũ ≤ u on Ω and∫
Ω̃

(ddcũ)n ≤
∫
Ω

(ddcu)n.

In the class Ep(Ω), p > 0, the subextension problem was investigated by P. H. Hiep. He proved

that if Ω ⊂ Ω̃ b Cn are bounded hyperconvex domains and u ∈ Ep(Ω), then there exists a function

ũ ∈ Ep(Ω̃) such that ũ ≤ u on Ω and∫
Ω̃

(−ũ)p(ddcũ)n ≤
∫
Ω

(−u)p(ddcu)n.

In here, The author had proved the condition of Ω compact relatively in Ω̃ to be superfluous.

Recently a weighted pluricomplex energy class Eχ(Ω), which is generalization of the classes

Ep(Ω) and F(Ω) was introduced and investigated by Benelkourchi, Guedj and Zeriahi. Benelkourchi

studied subextension for the class Eχ(Ω). Benelkourchi claimed that if Ω ⊂ Ω̃ are hyperconvex

domains in Cn and χ : R− −→ R+ is a decreasing function with χ(−∞) = +∞ then for every

u ∈ Eχ(Ω) there exists ũ ∈ Eχ(Ω̃) such that ũ ≤ u on Ω and (ddcũ)n ≤ (ddcu)n on Ω and∫
Ω̃

χ(ũ)(ddcũ)n ≤
∫
Ω

χ(u)(ddcu)n.

If we take χ(t) = (−t)p, p > 0 then the class Eχ(Ω) coincides with the class Ep(Ω). If χ(t) is bounded

and χ(0) > 0 then Eχ(Ω) is the class F(Ω) and then the results of subextension turn back to the

results mentioned above.

The subextension problem in the classes with boundary values was considered in recent years.

Namely, in 2008, Czyż and Hed showed that if Ω and Ω̃ are two bounded hyperconvex domains

such that Ω ⊂ Ω̃ ⊂ Cn, n ≥ 1 and u ∈ F(Ω, f) with f ∈ E(Ω) has subextension v ∈ F(Ω̃, g) with

g ∈ E(Ω̃) ∩MPSH(Ω̃), and ∫
Ω̃

(ddcv)n ≤
∫
Ω

(ddcu)n,
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under the assumption that f ≥ g on Ω, where MPSH(Ω̃) denotes the set of maximal plurisub-

harmonic functions on Ω̃.

It should be noticed that in results above only estimation of total Monge-Ampère mass of subexten-

sion was obtained. In 2014, L.M.Hai anh N.X.Hong investigated subextension in the class F(Ω, f)

and They proved that the Monge-Ampère measure of subextension does not change. Namely let

Ω ⊂ Ω̃ be bounded hyperconvex domains in Cn and let f ∈ E(Ω) and g ∈ E(Ω̃)∩MPSH(Ω̃) with

f ≥ g on Ω, then for every u ∈ F(Ω, f) with∫
Ω

(ddcu)n < +∞,

there exists ũ ∈ F(Ω̃, g) such that ũ ≤ u on Ω and (ddcũ)n = 1Ω(ddcu)non Ω̃.

In this chapter we extend this result to the class Eχ(Ω, f). Our main theorem is the following.

Theorem 1.2.1. Let Ω b Ω̃ be bounded hyperconvex domains in Cn and let f ∈ E(Ω)∩MPSH(Ω),

g ∈ E(Ω̃) ∩MPSH(Ω̃) with f ≥ g on Ω. Assume that χ : R− −→ R+ is a decreasing continuous

function such that χ(t) > 0 for all t < 0. Then for every u ∈ Eχ(Ω, f) such that∫
Ω

[χ(u)− ρ](ddcu)n < +∞,

for some ρ ∈ E0(Ω), there exists ũ ∈ Eχ(Ω̃, g) such that ũ ≤ u on Ω and

χ(ũ)(ddcũ)n = 1Ωχ(u)(ddcu)n on Ω̃.

2. Subextension of plurisubharmonic functions in unbounded hyperconvex domains

and applications

In the paper we study subextension of plurisubharmonic functions for the class F(Ω, f) intro-

duced and investigated in paper ”The complex Monge-Ampère equation in unbounded hyperconvex

domains in Cn” on unbounded hyperconvex domains Ω in Cn. For the history and results on subex-

tension of plurisubharmonic functions in the Cegrell classes on bounded hyperconvex domains in

Cn we refer readers to our earlier 1. Note that to study subextension of plurisubharmonic functions

on domains in Cn closely concerns with the solvability of the complex Monge-Ampère equations

on them. Hence, up to now, subextension of plurisubharmonic functions only is carried out on

bounded hyperconvex domains in Cn because for these domains ones obtains many perfect results

on the solvability of the complex Monge-Ampère equations. However, it is quite difficult when we

want to consider this problem for unbounded hyperconvex domains in Cn because results on the

solvability of the complex Monge-Ampère on them are limited.

Relying on our some recent results for solving the complex Monge-Ampère equations on un-

bounded hyperconvex domains in Cn introduced and investigated by L.M.Hai- N.V.Trao and

N.X.Hong in The complex MongeAmpre equation in unbounded hyperconvex domains in Cn . We

recall the definition of the Cegrell classes for unbounded hyperconvex domains which were intro-

duced in L.M.Hai-N.V.Trao and N.X.Hong.

Definition 2 Let Ω be a unbounded hyperconvex domain in Cn such that PSHs(Ω)∩L∞(Ω) 6= ∅.

Put

E0(Ω) = {u ∈ PSH−(Ω) ∩ L∞(Ω) : ∀ ε > 0, {u < −ε} b Ω,

∫
Ω

(ddcu)n <∞},
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F(Ω) =
{
u ∈ PSH−(Ω) : ∃ E0(Ω) 3 uj ↘ u, sup

j

∫
Ω

(ddcuj)
n <∞

}
,

and

E(Ω) =
{
u ∈ PSH−(Ω) : ∀ U b Ω,∃ v ∈ F(Ω) vi v = u trong U}.

If f ∈MPSH−(Ω) ∩ C(Ω) and K ∈ {E0,F , E} then we put

K(Ω, f) = {u ∈ PSH−(Ω) : ∃ ψ ∈ K(Ω), ψ + f ≤ u ≤ f trong Ω}.

Remark It is clear that E0(Ω, f) ⊂ F(Ω, f) ⊂ E(Ω, f).

We will extend our result in L.M.Hai and N.X.Hong for unbounded hyperconvex domains in

Cn. The first main result is the following theorem.

Theorem 2.2.1.Let Ω ⊂ Ω̃ be unbounded hyperconvex domains in Cn such that PSHs(Ω̃) ∩
L∞(Ω̃) 6= ∅. Then for every f ∈MPSH−(Ω̃) ∩ C(Ω̃) and for every u ∈ F(Ω, f) such that∫

Ω

(ddcu)n <∞,

there exists ũ ∈ F(Ω̃, f) such that ũ ≤ u on Ω and

(ddcũ)n = 1Ω(ddcu)n on Ω̃.

As an application of the above result, in the next section of the chapter we study approximation

of plurisubharmonic functions by an increasing sequence of plurisubharmonic functions defined on

larger domains. Let Ω b Ωj+1 b Ωj be bounded hyperconvex domains in Cn. In 2006, Benelkourchi

proved that if lim
j→∞

Cap(K,Ωj) = Cap(K,Ω), for all compact subset K b Ω then for every u ∈
Fa(Ω) there exists an increasing sequence of functions uj ∈ Fa(Ωj) such that uj −→ u a.e. in Ω.

Next, in 2008, in order to improve the above result of Benelkourchi, Cegrell and Hed proved that if

there exists v ∈ N (Ω), v < 0 and vj ∈ N (Ωj) such that vj −→ v a.e. on Ω then for every u ∈ F(Ω)

there exists an increasing sequence of functions uj ∈ F(Ωj) such that uj −→ u a.e. in Ω.

In 2010, Hed investigated the above result for the class F(Ω, f). Namely she proved that if there

exists v ∈ N (Ω), v < 0 and vj ∈ N (Ωj) such that vj −→ v a.e. on Ω then for every f ∈
MPSH−(Ω1) ∩ C(Ω1) and u ∈ F(Ω, f) such that∫

Ω

(ddcu)n <∞,

there exists an increasing sequence of functions uj ∈ F(Ωj, f) such that uj −→ u a.e. in Ω. In

this chapter, by using an another approach, we prove the above result of Hed for unbounded

hyperconvex domains in Cn. Namely, we prove the following theorem.

Theorem 2.3.1. Let Ω be a unbounded hyperconvex domain in Cn and let {Ωj}∞j=1 be a sequence of

unbounded hyperconvex domains such that Ω ⊂ Ωj+1 ⊂ Ωj and PSHs(Ω1)∩L∞(Ω1) 6= ∅. Assume

that there exist ψ ∈ F(Ω) and ψj ∈ F(Ωj) such that ψj ↗ ψ a.e in Ω as j ↗ ∞. Then for every

f ∈MPSH−(Ω1) ∩ C(Ω1) and for every u ∈ F(Ω, f) such that∫
Ω

(ddcu)n <∞,

there exists uj ∈ F(Ωj, f) such that uj ↗ u a.e. in Ω as j ↗∞.

3. Subextension of m-subharmonic functions
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In recent times, the extention the class of plurisubharmonic functions and to study a class of the

complex differential operators more general than the Monge-Ampère operator have been studying

by many authors, such as Z. B locki, S. Dinew, Ko lodziej, A. S. Sadullaev, B. I. Abullaev, L. H.

Chinh, . . . They introduced m-subharmonic functions and studied the complex Hessian operator.

The results of Z. B locki, S. Dinew, Ko lodziej, A. S. Sadullaev were mainly about on locally bounded

m−subharmonic functions. Continuing to study the complex Hessian operator for m-subharmonic

functions which may be not locally bounded, in recent preprint, L. H. Chinh introduced the Cegrell

classes E0
m(Ω), Fm(Ω) and Em(Ω) associated to m-subharmonic functions. However, it is difficult

to image this class. Thus, the problem for us is studying the class Em(Ω) more detail or describe

and giving some characterrizations of this class.

In the following section we study the problem of subextension for the class m- unbounded

plurisubharmonic function, in particular for class Fm(Ω).

Subextension for the class Fm(Ω) in the case Ω is a hyperconvex domain in Cn was studied earlier.

However, the result on subextension which the author obtained in the class Fm(Ω) in the above

mentioned paper is limited. Firstly, the author has to assume that Ω is a relatively compact

hyperconvex domain in Ω̃. Secondly, the author does not give a control of the complex Hessian

measures of subextension and given m-subharmonic function. In this note we try to overcome the

above limits. We prove the existence of subextension for the class Fm(Ω) in the case Ω, Ω̃ are

bounded m-hyperconvex domains in Cn without assymption that Ω is relatively compact in Ω̃ and

to control the complex Hessian measure of subextension. Namely we prove the following.

Theorem 3.2.1. Let Ω ⊂ Ω̃ ⊂ Cn be bounded m-hyperconvex domains and u ∈ Fm(Ω). Then there

exists w ∈ Fm(Ω̃) such that w ≤ u on Ω and

(ddcw)m ∧ βn−m = 1Ω(ddcu)m ∧ βn−m.

From the above theorem, we obtain the following corollary.

Corollary 3.2.5. Let Ω ⊂ Ω̃ be bounded m-hyperconvex domains and {uj}j≥1, u ⊂ Fm(Ω) be such

that uj ≥ u, uj is convergent in Cm-capacity to u on Ω. Assume that ũj, ũ are subextensions of

uj, u, respectively, to Ω̃. Then Hm(ũj) is weakly convergent to Hm(ũ) on Ω̃.

4. Equations of complex Monge-Ampère type for arbitrary measures

In the pluripotential theory, finding solutions to Dirichler problem
u ∈ PSH(Ω) ∩ L∞(Ω)

(ddcu)n = dµ

lim
z→x

u(z) = ϕ(x),∀x ∈ ∂Ω.

(1)

in which Ω is an open set, bounded in Cn, µ is a positive Borel measure on Ω and ϕ ∈ C(∂Ω)

is a continuous function, always draws attentions of many authors. In case Ω ⊂ Cn is a bounded

hyperconvex domain and dµ = fdV2n, f ∈ C(Ω) then Bedford - Taylor proved (1) to have an

unique solution. If dµ = fdV2n, f ∈ C∞(Ω), f > 0 and ∂Ω is smooth, the authors proved (1) to

have an unique solution u ∈ C∞(Ω). One way to solve the problem is to examine the existence

of the solution of the equation above if we can prove the existence at a subsolution. In 1995,

S. Kolodziej proved that in a strictly pseudoconvex Ω ⊂ Cn: if there exists a subsolution in the

class of bounded plurisubharmonic function then equation (1) has a bounded solution. In 2009,

Åhag, Cegrell, Czyż and H. Hiep researched the problem in a hyperconvex domain with the class

of unnecessarily bounded plurisubharmonic with the extending boundary values and resulted in:
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Let Ω ⊂ Cn be a hyperconvex domain and H ∈ E(Ω) ∩MSHP (Ω). If there are w ∈ E(Ω) so that

µ ≤ (ddcu)n then ∃u ∈ E(Ω, H) with (ddcu)n = µ. To continue the research of solving Monge -

Ampère equation, in chapter 4 of the thesis we discuss the weak solutions of equation of complex

Monge - Ampère type. The equation of the form

(ddcu)n = F (u, .)dµ, (2)

The proof of the existence of weak solutions of this equation has been investigated by many authors;

When µ vanishes on all pluripolar sets and µ(Ω) < +∞, F is bounded by an integrable function

for µ which is independent of the first variable then for all f ∈ MPSH(Ω) ∩ E(Ω), Cegrell and

Ko lodziej proved that (2) has a solution u ∈ Fa(Ω, f) where MPSH(Ω) denotes the set of maximal

plurisubharmonic functions and Fa(Ω, f) is the set of plurisubharmonic functions introduced and

investigated by Cegrell. Next, Czyż investigated the equation (2) in the class N (Ω, f). He proved

that if µ vanishes on pluripolar sets of Ω, F is a continuous function of the first variable and

bounded by an integrable function for (−ϕ)µ which is independent of the first variable then the

equation (2) is solvable in the class N (Ω, f). More recently, under the same assumption that µ

vanishes on all pluripolar sets of Ω and there exists a subsolution v0 ∈ N a(Ω), i.e there exists a

function v0 ∈ N a(Ω) such that (ddcv0)n ≥ F (v0, .)dµ, Benelkourchi showed that (2) has a solution

u ∈ N a(Ω, f).

The problem here is that we want to study weak solutions of the equation (2) for an arbitrary

measure, in particular, for measures carried by a pluripolar set. The main result is the following.

Theorem 4.2.1. Let Ω be a bounded hyperconvex domain and µ be a nonnegative measure in Ω.

Assume that F : R× Ω −→ (0,+∞) is a dt× dµ-measurable function such that:

(1) For all z ∈ Ω, the function t 7−→ F (t, z) is continuous and nondecreasing.

(2) For all t ∈ R, the function z 7−→ F (t, z) belongs to L1
loc(Ω, µ).

(3) There exists a function w ∈ N (Ω) such that (ddcw)n ≥ F (w, .)dµ.

Then for any maximal plurisubharmonic function f ∈ E(Ω) there exists u ∈ N (Ω, f) such that

u ≥ w and (ddcu)n = F (u, .)dµ in Ω.



Chapter 1

Subextension of plurisubharmonic

functions with boundary values in

weighted pluricomplex energy classes

As in the introduction. The purpose of this project is to prove the subextension of plurisubhar-

monic functions with boundary values in weighted pluricomplex energy classes in Eχ(Ω, f).

Chapter 1 includes two parts. The first part, important background knowledge for this chapter

and the following ones is presented. While the demonstration of the main theorem is displayed in

the second chapter.

The results were pulled out from the article[1] (in the mentioned project category of the thesis)

1.1 Some definitions and consequences

Let Ω be opening set in Cn. By PSH(Ω) we denote in turn the set of plurisubharmonic functions

on Ω and By PSH−(Ω) and the set of negative maximal plurisubharmonic functions on Ω.

Definition 1.1.1. Let Ω ⊂ Ω̃ be domains in Cn and let u be a plurisubharmonic function on Ω

(briefly, u ∈ PSH(Ω)). A function ũ ∈ PSH(Ω̃) is subextension of u if for all z ∈ Ω, ũ(z) ≤ u(z).

Remark 1.1.2. If ũ is subextension of u, at the point z ∈ Ω so that u(z) = −∞ then ũ(z) = −∞.

Definition 1.1.3. Set open Ω is a bounded hyperconvex domain in Cn if Ω is a bounded domain

in Cn and there exists a plurisubharmonic function ϕ : Ω −→ (−∞, 0) such that for every c < 0

the set Ωc = {z ∈ Ω : ϕ(z) < c} b Ω.

Definition 1.1.4. A plurisubharmonic function u on Ω is said to be maximal (briefly, u ∈
MPSH(Ω)) if for every compact set K b Ω and for every v ∈ PSH(Ω), if v ≤ u on Ω \ K
then v ≤ u on Ω.

By MPSH−(Ω) we denote the set of negative maximal plurisubharmonic functions on Ω

Remark 1.1.5. It is well known that locally bounded plurisubharmonic functions are maximal if

and only if they satisfy the homogeneous Monge-Ampère equation (ddcu)n = 0. B locki extended

the above result for the class E(Ω).

We recall the class N (Ω) introduced by Cegren.

10
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Definition 1.1.6. Let Ω be a hyperconvex domain in Cn and {Ωj}j≥1 a fundamental sequence of Ω.

This is an increasing sequence of strictly pseudoconvex subsets {Ωj}j≥1 of Ω such that Ωj b Ωj+1

and
+∞⋃
j=1

Ωj = Ω.

Let ϕ ∈ PSH−(Ω). For each j ≥ 1, put

ϕj = sup{u : u ∈ PSH(Ω), u ≤ ϕ on Ω\Ωj}.

The function (limj→∞ ϕ
j)∗ ∈MPSH(Ω). Set

N (Ω) = {ϕ ∈ E(Ω) : ϕj ↑ 0}.

Remark 1.1.7. It is easy to see that F(Ω) ⊂ N (Ω) ⊂ E(Ω).

Next, we recall the class Eχ(Ω) and the relation between this class and the classes Ep(Ω),F(Ω)

and N (Ω).

Definition 1.1.8. Let χ : R− −→ R+ be a decreasing function and Ω be a hyperconvex domain

in Cn. We say that the function u ∈ PSH−(Ω) belongs to Eχ(Ω) if there exists a sequence {uj} ⊂
E0(Ω) decreasing to u on Ω and satisfying

sup
j

∫
Ω

χ(uj)(dd
cuj)

n < +∞.

Remark 1.1.9.

a) If we take χ(t) = (−t)p, p > 0 then the class Eχ(Ω) coincides with the class Ep(Ω).

b) If χ(t) is bounded and χ(0) > 0 then Eχ(Ω) is the class F(Ω).

c) Corollary 3.3 in L.M.Hai anh P.H.Hiep claims that if χ 6≡ 0 then Eχ(Ω) ⊂ E(Ω) and, hence, in

this case the Monge-Ampère operator is well defined on Eχ(Ω).

d) Corollary 3.3 in L.M.Hai anh P.H.Hiep shows that if χ(t) > 0 for t < 0 then Eχ(Ω) ⊂ N (Ω).

Moreover, Theorem 2.7 in Benelkouchri(2011) implies that

Eχ(Ω) =

u ∈ N (Ω) :

∫
Ω

χ(u)(ddcu)n < +∞

 .

In this thesis, we are supposed to use the concept as follows.

Definition 1.1.10. Let Ω ⊂ Cn be an opening set, µ a positive Borel measure on Ω, assume that:

i) µ vanishes on pluripolar sets of Ω for all A ⊂ Ω, A is a pluripolar set, we have µ(A) = 0.

ii) µ is carried by a pluripolar set if A ⊂ Ω exists(A is a pluripolar set), so that µ(A) = µ(Ω). In

this case we can write down µ = 1Aµ.

Next, We recall classes of plurisubharmonic functions with generalized boundary values in the

class E(Ω).

Definition 1.1.11. Let K ∈ {E0(Ω),F(Ω),N (Ω), Eχ(Ω), E(Ω)} and let f ∈ E(Ω). Then we say

that a plurisubharmonic function u defined on Ω is in K(Ω, f) if there exists a function ϕ ∈ K
such that

ϕ+ f ≤ u ≤ f,

on Ω. By Ka(Ω, f) we denote the set of plurisubharmonic functions u ∈ K(Ω, f) such that (ddcu)n

vanishes on all pluripolar sets of Ω.
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We need the following proposition which will be used in the main result.

Proposition 1.1.12. Let χ : R− −→ R+ be a decreasing continuous function such that χ(t) > 0

for all t < 0 and Ω be a bounded hyperconvex domain in Cn. Assume that µ is a positive Radon

measure which vanishes on pluripolar sets of Ω and u, v ∈ E(Ω) are such that χ(u)(ddcu)n ≥ µ and

χ(v)(ddcv)n ≥ µ. Then

χ(max(u, v))(ddc max(u, v))n ≥ µ.

Proposition 1.1.13. Let Ω be a bounded hyperconvex domain in Cn and let f ∈ E(Ω)∩MPSH(Ω).

Then for every u ∈ N (Ω, f) such that ∫
{u=−∞}∩Ω

(ddcu)n < +∞,

there exists v ∈ F(Ω, f) such that v ≥ u and

(ddcv)n = 1{u=−∞}(dd
cu)n.

1.2 Subextension of plurisubharmonic functions in classes Eχ(Ω, f)

In this section we give the main result of the chapter. However, to arrive at the desired result

we need some auxiliary lemmas

Theorem 1.2.1. Let Ω b Ω̃ be bounded hyperconvex domains in Cn and let f ∈ E(Ω)∩MPSH(Ω),

g ∈ E(Ω̃) ∩MPSH(Ω̃) with f ≥ g on Ω. Assume that χ : R− −→ R+ is a decreasing continuous

function such that χ(t) > 0 for all t < 0. Then for every u ∈ Eχ(Ω, f) such that∫
Ω

[χ(u)− ρ](ddcu)n < +∞,

for some ρ ∈ E0(Ω), there exists ũ ∈ Eχ(Ω̃, g) such that ũ ≤ u on Ω and

χ(ũ)(ddcũ)n = 1Ωχ(u)(ddcu)n on Ω̃.

we need some auxiliary lemmas.

Lemma 1.2.2. Let Ω ⊂ Ω̃ be bounded hyperconvex domains in Cn and let f ∈ E(Ω), g ∈ E(Ω̃) ∩
MPSH(Ω̃) with f ≥ g on Ω. Assume that u ∈ F(Ω, f) is such that

(a) (ddcu)n is carried by a pluripolar set.

(b)
∫
Ω

(ddcu)n < +∞.

Then the function

ũ := (sup{ϕ ∈ F(Ω̃, g) : ϕ ≤ u on Ω})∗

belongs to F(Ω̃, g) and (ddcũ)n = 1Ω(ddcu)n on Ω̃.

Lemma 1.2.3. Let Ω be a bounded hyperconvex domain in Cn and let µ be a positive Radon

measure which vanishes on pluripolar sets of Ω with µ(Ω) < +∞. Let χ : R− → R+ be a bounded

decreasing continuous function such that χ(t) > 0 for all t < 0 and χ(−∞) = 1. Assume that

f ∈ E(Ω) ∩MPSH(Ω) and v ∈ F(Ω, f) such that (ddcv)n is carried by a pluripolar set and∫
Ω

(ddcv)n < +∞.
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Then the function u defined by

u := (sup{ϕ ∈ E(Ω) : ϕ ≤ v and χ(ϕ)(ddcϕ)n ≥ µ})∗

belongs to N (Ω, f) and

χ(u)(ddcu)n ≥ µ+ (ddcv)n.

Moreover, if supp(ddcv)n b Ω and
∫
Ω

(−ρ)(ddcu)n < +∞ for some ρ ∈ E0(Ω) then

χ(u)(ddcu)n = µ+ (ddcv)n.



Chapter 2

Subextension of plurisubharmonic

functions in unbounded hyperconvex

domains and applications

As in the introduciton, we will present the subextension of plurisubharmonic functions in the

classes F(Ω, f) with Ω being unbounded hyperconvex domains. In the application par, we solve

approximate problems bout plurisubharmonic functions with boundary values in unbounded hy-

perconvex Cn.

Chapter 2 includes three parts. In the first chapter,some definitions and important clauses are

presented for later demonstration. Some lemmas and the main theorem are displayed in the second

one. The application is in the third part. Here, we apply the result of subextension of functions in

unbounded hyperconvex domains to approximate problems about plurisubharmonic functions in

increasing sequence of plurisubharmonic functions in wider domains.

Chapter 2 was based on the article [2] (in the mentioned project category of the thesis).

2.1 Some definitions and consequences

Definition 2.1.1. Let Ω be a domain in Cn. A negative plurisubharmonic function u ∈ PSH−(Ω)

is called to be strictly plurisubharmonic if for all U b Ω there exists λ > 0 such that the function

u(z) − λ|z|2 ∈ PSH(U). That is ddcu ≥ 4λβ on U , where β = i
2

n∑
j=1

dzj ∧ dz̄j is the canonical

Kähler form in Cn.

By PSHs(Ω) denotes the set of all negative strictly plurisubharmonic functions in Ω.

In the article ”The complex MongeAmpre equation in unbounded hyperconvex domains in Cn” of

L.M.Hai, N.V.Trao, N.X.Hong(2014) example 3.2 has shown to prove the existence of an unbounded

hyperconvex domain Ω in Cn such that PSHs(Ω) ∩ L∞(Ω) 6= ∅.

Example 2.1.2. Let n ≥ 1 be an interger. Put ρ(z) := 12|<z1|2 − 1
(|z1|2+1)2

+
∑n

j=2 |zj|2, where

z = (z1, z2, . . . , zn) ∈ Cn, zj = xj + iyj, j = 1, . . . , n. Let Ω be a connected component of the open

set

{z ∈ Cn : ρ(z) < 0},
that contains the line (iy1, 0), y1 ∈ R. It is easy to see that Ω is an unbounded domain in Cn and ρ

is a strictly plurisubharmonic function on Ω (see Example 3.2 in L.M.Hai, N.X.Hong, N.V.Trao).

14
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Moreover, throughout the chapter we always keep the assumption that PSHs(Ω)∩L∞(Ω) 6=
∅ because under this assumption, in the case Ω is a unbounded hyperconvex domain in Cn,

Proposition 4.2 in in L.M.Hai-N.V.Trao and N.X.Hong implies that if u ∈ E(Ω, f) then u ∈ E(D)

for every bounded hyperconvex domain D b Ω and, hence, in this case the complex Monge-Ampère

operator (ddc.)n is well defined in the class E(Ω, f).

Now, we give some results concerning to the class F(Ω, f) when Ω is a unbounded hyperconvex

domain in Cn.

Proposition 2.1.3. Let Ω be a unbounded hyperconvex domain in Cn such that PSHs(Ω) ∩
L∞(Ω) 6= ∅ and let f ∈ MPSH−(Ω) ∩ C(Ω). Assume that u, v ∈ F(Ω, f). Then the following

hold.

(a) If u ≤ v then ∫
Ω

(ddcu)n ≥
∫

Ω

(ddcv)n.

(b) If u ≤ v, (ddcu)n ≤ (ddcv)n and
∫

Ω
(ddcu)n <∞ then u = v.

2.2 Subextension of plurisubharmonic functions in unbounded hyper-

convex domains

The first main result is the following theorem.

Theorem 2.2.1. Let Ω ⊂ Ω̃ be unbounded hyperconvex domains in Cn such that PSHs(Ω̃) ∩
L∞(Ω̃) 6= ∅. Then for every f ∈MPSH−(Ω̃) ∩ C(Ω̃) and for every u ∈ F(Ω, f) such that∫

Ω

(ddcu)n <∞,

there exists ũ ∈ F(Ω̃, f) such that ũ ≤ u on Ω and

(ddcũ)n = 1Ω(ddcu)n on Ω̃.

we first need some following auxiliary results:

Lemma 2.2.2. Let Ω be a bounded hyperconvex domain in Cn and let f ∈ MPSH−(Ω) ∩ E(Ω).

Assume that w ∈ E(Ω) and µ is a positive Borel measure in Ω such that w ≤ f in Ω, µ ≤ (ddcw)n

in Ω and
∫

Ω
(ddcw)n <∞. Then there exists u ∈ F(Ω, f) such that u ≥ w and (ddcu)n = µ in Ω.

Lemma 2.2.3. Let Ω be a unbounded hyperconvex domain in Cn such that PSHs(Ω)∩L∞(Ω) 6= ∅
and let f ∈ MPSH−(Ω) ∩ C(Ω). Assume that {Ωj}∞j=1 is a sequence of bounded hyperconvex

domains such that Ωj b Ωj+1 b Ω and Ω =
∞⋃
j=1

Ωj. Then for every u ∈ F(Ω, f) such that

∫
Ω

(ddcu)n <∞,

there exists a decreasing sequence uj ∈ F(Ωj, f) such that uj ↘ u in Ω and (ddcuj)
n = (ddcu)n in

Ωj.
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2.3 Approximation

As an application of the above result, in the next section of the chapter we study approx-

imation of plurisubharmonic functions by an increasing sequence of plurisubharmonic functions

defined on larger domains

Theorem 2.3.1. Let Ω be a unbounded hyperconvex domain in Cn and let {Ωj}∞j=1 be a sequence of

unbounded hyperconvex domains such that Ω ⊂ Ωj+1 ⊂ Ωj and PSHs(Ω1)∩L∞(Ω1) 6= ∅. Assume

that there exist ψ ∈ F(Ω) and ψj ∈ F(Ωj) such that ψj ↗ ψ a.e in Ω as j ↗ ∞. Then for every

f ∈MPSH−(Ω1) ∩ C(Ω1) and for every u ∈ F(Ω, f) such that∫
Ω

(ddcu)n <∞,

there exists uj ∈ F(Ωj, f) such that uj ↗ u a.e. in Ω as j ↗∞.

we need the Proposition:

Proposition 2.3.2. Let Ω be a unbounded hyperconvex domain in Cn such that PSHs(Ω) ∩
L∞(Ω) 6= ∅ and let f ∈ MPSH−(Ω) ∩ C(Ω). Assume that u ∈ E(Ω, f) such that

∫
Ω

(ddcu)n < ∞.

Then u ∈ F(Ω, f) if and only if there exists a sequence {uj}∞j=1 ⊂ E0(Ω, f) such that uj ↘ u in Ω

as j ↗∞ and

sup
j

∫
Ω

(ddcuj)
n <∞.



Chapter 3

Subextension of m-subharmonic

functions

As in overview,in this chapter,we do researchon on subextension of m - subharmonic in Fm(Ω)

with Ω being m - hyperconvex bounded in Cn. We also indicate that an equality of the complex

Hessian measures of subextension and initial function.

Chapter 3 includes two parts. In the first part, we will present background knowledge for

this chapter. In the second one, we will prove several clauses, lemmas applied to prove the result

of subextension of m - subharmonic functions and its consequence.

Chapter 3 was pulled out from the article [4] (in the mentioned project category of the thesis).

3.1 Some definitions and consequences

Let Ω be an open subset in Cn with the canonical Kähler form β = ddc‖z‖2 where d = ∂ + ∂

and dc = i
4
(∂ − ∂) and, hence, ddc = i

2
∂∂. For 1 ≤ m ≤ n, following Bloki, we define

Γm = {η ∈ C(1,1) : η ∧ βn−1 ≥ 0, . . . , ηm ∧ βn−m ≥ 0},

where C(1,1) denotes the space of (1, 1)-forms with constant coefficients.

Definition 3.1.1. Let u be a subharmonic function on an open subset Ω ⊂ Cn. u is said to be

m-subharmonic function on Ω if for every η1, . . . , ηm−1 in Γm the inequality

ddcu ∧ η1 ∧ . . . ∧ ηm−1 ∧ βn−m ≥ 0,

holds in the sense of currents.

By SHm(Ω) we denote the set of m-subharmonic functions on Ω while SH−m(Ω) denotes the set

of negative m-subharmonic functions on Ω.

Before to formulate basic properties of m-subharmonic functions, we recall the following. For

λ = (λ1, . . . , λn) ∈ Rn define

Sm(λ) =
∑

1≤j1<···<jm≤n

λj1 · · ·λjm .

By H we denote the vector space of complex hermitian n × n matrices over R. For A ∈ H let

λ(A) = (λ1, . . . , λn) ∈ Rn be the eigenvalues of A. Put

S̃m(A) = Sm(λ(A)).

17
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As in L.Garding(1959), we define

Γ̃m = {A ∈ H : λ(A) ∈ Γm} = {S̃1 ≥ 0} ∩ · · · ∩ {S̃m ≥ 0}.

Now we list the basic properties of m-subharmonic functions the proofs of which are repeated as

for plurisubharmonic functions in pluripotential theory so we omit.

Proposition 3.1.2. Let Ω be an open set in Cn. Then we have

(a) PSH(Ω) = SHn(Ω) ⊂ SHn−1(Ω) ⊂ · · · ⊂ SH1(Ω) = SH(Ω). Hence, u ∈ SHm(Ω),

1 ≤ m ≤ n, then u ∈ SHr(Ω), for every 1 ≤ r ≤ m.

(b) If u is C2 smooth then it is m-subharmonic if and only if the form ddcu is pointwise in Γ̃m.

(c) If u, v ∈ SHm(Ω) and α, β > 0 then αu+ βv ∈ SHm(Ω).

(d) If u, v ∈ SHm(Ω) then so is max{u, v}.
(e) If {uj}∞j=1 is a family of m-subharmonic functions, u = sup

j
uj < +∞ and u is upper

semicontinuous then u is a m-subharmonic function.

(f) If {uj}∞j=1 is a decreasing sequence of m-subharmonic functions then so is u = lim
j→+∞

uj.

(g) Let ρ ≥ 0 be a smooth radial function in Cn vanishing outside the unit ball and satisfying∫
Cn ρdVn = 1, where dVn denotes the Lebesgue measure of Cn. For u ∈ SHm(Ω) we define

uε(z) := (u ∗ ρε)(z) =

∫
B(0,ε)

u(z − ξ)ρε(ξ)dVn(ξ), ∀z ∈ Ωε,

where ρε(z) := 1
ε2n
ρ(z/ε) and Ωε = {z ∈ Ω : d(z, ∂Ω) > ε}. Then uε ∈ SHm(Ωε) ∩ C∞(Ωε) and

uε ↓ u as ε ↓ 0.

(h) Let u1, . . . , up ∈ SHm(Ω) and χ : Rp → R be a convex function which is non decreas-

ing in each variable. If χ is extended by continuity to a function [−∞,+∞)p → [−∞,∞), then

χ(u1, . . . , up) ∈ SHm(Ω).

Example 3.1.3. Let u(z1, z2, z3) = 3|z1|2 + 2|z2|2 − |z3|2. By using (b) of Proposition 3.1.2 it is

easy to see that u ∈ SH2(C3). However, u is not a plurisubharmonic function in C3 because the

restriction of u on the line (0, 0, z3) is not subharmonic.

Now, we define the complex Hessian operator of locally bounded m-subharmonic functions as

follows.

Definition 3.1.4. Assume that u1, . . . , up ∈ SHm(Ω)∩L∞loc(Ω). Then the complex Hessian operator

Hm(u1, . . . , up) is defined inductively by

ddcup ∧ · · · ∧ ddcu1 ∧ βn−m = ddc(updd
cup−1 ∧ · · · ∧ ddcu1 ∧ βn−m).

From the definition of m-subharmonic functions and using arguments as in the proof of Theorem

2.1 in Bedford and Taylor(1982) we note that Hm(u1, . . . , up) is a closed positive current of bidegree

(n−m+p, n−m+p) and this operator in continuous under decreasing sequences of locally bounded

m-subharmonic functions. Hence, for p = m, ddcu1 ∧ · · · ∧ ddcum ∧ βn−m is a nonnegative Borel

measure. In particular, when u = u1 = · · · = um ∈ SHm(Ω) ∩ L∞loc(Ω) the Borel measure

Hm(u) = (ddcu)m ∧ βn−m,

is well defined and is called the complex Hessian of u.

Similarly as the concept 1.1.1 about subextension of plurisubharmonic function, we define

subextension of m-subharmonic function,
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Definition 3.1.5. Let Ω ⊂ Ω̃ be open subsets of Cn and u a m-subharmonic function on Ω

(u ∈ SHm(Ω)). A function ũ ∈ SHm(Ω̃) is said to be subextension of u if for all z ∈ Ω, ũ(z) ≤ u(z).

Now, We recall m-hyperconvex domains in Cn which are useful for theory of m-subharmonic

functions and the complex Hessian operator and they are similar as hyperconvex domains in

pluripotential theory.

Definition 3.1.6. Let Ω be a bounded domain in Cn. Ω is said to be m-hyperconvex if there exists

a continuous m-subharmonic function u : Ω −→ R− such that Ωc = {u < c} b Ω for every c < 0.

Remark 3.1.7. From the definition ofm-hyperconvex domains and the definition ofm-subharmonic

fuctions, we see that for all plurisubharmonic functions are m-subharmonic functions with all

n ≥ m ≥ 1 so that all hyperconvex domains in Cn are m-hyperconvex domains.

Next, as in L.H.Chinh(2013, 2015) we recall Cegrell’s classes for m-subharmonic functions

as follows. .

Definition 3.1.8. Let Ω ⊂ Cn be a m-hyperconvex domain. Put:

E0
m = E0

m(Ω) = {u ∈ SH−m(Ω) ∩ L∞(Ω) : lim
z→∂Ω

u(z) = 0,

∫
Ω

Hm(u) <∞}.

Fm = Fm(Ω) =
{
u ∈ SH−m(Ω) : ∃ E0

m 3 uj ↘ u, sup
j

∫
Ω

Hm(uj) <∞
}
.

Em = Em(Ω) =
{
u ∈ SH−m(Ω) : ∀z0 ∈ Ω,∃ a neighborhood ω 3 z0, v

E0
m 3 uj ↘ u on ω, sup

j

∫
Ω

Hm(uj) <∞
}
.

Remark 3.1.9.

a) From the above definitions, it is easy to see that E0
m(Ω) ⊂ Fm(Ω) ⊂ Em(Ω).

b) Similar as Theorem 4.5 in Cegrell, Theorem 3.5 in L.H.Chinh implies that the class Em is the

biggest class of SH−m(Ω) satisfying the conditions

(i) if u ∈ Em(Ω) and v ∈ SH−m(Ω) then max{u, v} ∈ Em(Ω).

(ii) if u ∈ Em(Ω) and uj ∈ SH−m(Ω) ∩ L∞loc(Ω), uj ↘ u, then Hm(uj) is weakly convergent.

Similar as in pluripotential theory ones defines the relative m-extremal functions as follows.

Definition 3.1.10. Let Ω be an open subset of Cn and E ⊂ Ω. The relative m-extremal function

of the pair (E,Ω) is defined by

hm,E,Ω = hm,E = sup{u ∈ SH−m(Ω) : u|E ≤ −1}.

As L.H.Chinh(2015), h∗m,E is a negative m-subharmonic function in Ω. Moreover, if Ω is a m-

hyperconvex domain in Cn and Ω′ b Ω then it is easy to prove that hm,Ω′ belongs to E0
m(Ω).

Similar as in pluripotential theory ones defines m-polar subsets and Josefson’s theorem for

m-polar subsets

Definition 3.1.11. Let Ω be an open subset in Cn and E ⊂ Ω. E is said to be m-polar if for any

z ∈ E there exists a connected neighbourhood V of z in Ω and v ∈ SHm(V ), v 6≡ −∞ such that

E ∩ V ⊂ {v = −∞}.
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Theorem 2.35 in L.H.Chinh(2013) shows that the Josefson theorem in pluripotential theory is valid

for m-polar sets. That means that if E ⊂ Ω is an m-polar set then there exists an m-subharmonic

function in Cn such that E ⊂ {u = −∞} on E.

Remark 3.1.12.

a) By (a) of Proposition 3.1.2 it follows that every pluripolar set in pluripotential theory is m-polar

for all 1 ≤ m ≤ n.

b) By Example 2.27 in L.H.Chinh(2015) we note that there exists an m-polar set En in Cn which

is not a pluripolar set.

3.2 Subextension in class Fm(Ω)

In this section we will present the results about subextensions in class Fm(Ω). We will prove

the theorem

Theorem 3.2.1. Let Ω ⊂ Ω̃ ⊂ Cn be bounded m-hyperconvex domains and u ∈ Fm(Ω). Then

there exists w ∈ Fm(Ω̃) such that w ≤ u on Ω and

(ddcw)m ∧ βn−m = 1Ω(ddcu)m ∧ βn−m.

First we need the following proposition which is similar as Lemma 2.1 of Cegrell - Kolodziej and

Zeriahi and is used in the proof of subextension for m-subharmonic functions in the class Fm.

Proposition 3.2.2. Let Ω is an m-hyperconvex domain in Cn and u ∈ Fm(Ω) then

em(u) =

∫
Ω

Hm(u) <∞.

We have to use the result.

Proposition 3.2.3. Let Ω be a bounded m-hyperconvex domain in Cn and {uj} ⊂ Fm(Ω) be a

decreasing sequence which converges to u ∈ Fm(Ω). If ϕ ∈ SH−m(Ω) ∩ L∞(Ω) then

lim
j

∫
Ω

ϕHm(uj) =

∫
Ω

ϕHm(u).

Next, we need the following lemma which is used in the proof of Theorem 3.2.1. It also gives a

new technique in the approach to subextension of m-subharmonic functions with the control of

complex Hessian measures.

Lemma 3.2.4. Let Ω be a bounded m-hyperconvex domain in Cn and u ∈ Fm(Ω). Then there exist

g ∈ Fam(Ω), h ∈ Fm(Ω) such that

1{u>−∞}(dd
cu)m ∧ βn−m = (ddcg)m ∧ βn−m, (3.1)

1{u=−∞}(dd
cu)m ∧ βn−m = (ddch)m ∧ βn−m (3.2)

and h ≥ u ≥ g + h on Ω.

From the above theorem, we obtain the following corollary.

Corollary 3.2.5. Let Ω ⊂ Ω̃ be bounded m-hyperconvex domains and {uj}j≥1, u ⊂ Fm(Ω) be such

that uj ≥ u, uj is convergent in Cm-capacity to u on Ω. Assume that ũj, ũ are subextensions of

uj, u, respectively, to Ω̃. Then Hm(ũj) is weakly convergent to Hm(ũ) on Ω̃.



Chapter 4

Equations of complex Monge-Ampère

type for arbitrary measures

As in the introduction part. The purpose of this project is to present the existence of weak

solutions of equations of complex Monge Ampre type for arbitrary, in particular, measures carried

by pluripolar sets.

Chapter 4 includes two parts. In the first part, we will introduce about equations of complex

Monge Ampre type and the demonstration of the main result of the chapter. In the second one,

we will prove the existence of weak solutions of complex Monge Ampre type on N (Ω, f) class for

arbitrary measures.

Chapter 4 was based on the article [3] (in the mentioned project category of the thesis).

4.1 Introduction

To be suitable for the presentation, we will recall the definition of equations of complex

Monge Ampre type released by Bedford, Taylor.

Definition 4.1.1. Let Ω be a bounded hyperconvex domain in Cn and µ a positive Borel measure

on Ω. Assume that F : R× Ω −→ [0,+∞) is a dt× dµ-measurable function. The equation of the

form

(ddcu)n = F (u, .)dµ, (4.1)

where u is a plurisubharmonic function on Ω is called to be the equation of complex Monge-Ampère

type

Bedford and Taylor proved the existence of a solution to the following Monge-Ampre type equa-

tion (4.1). They assumed that µ is the Lebesgue measure, and F
1
n ≥ 0 is bounded, continuous,

convex, and increasing in the first variable. Late in 1984, Cegrell showed that the convexity and

monotonicity conditions are superfluous. The case when F is smooth was proved. Ko lodziej proved

existtence and uniqueness of soluion to (4.1) when F is a bounded, nonnegative function that is

nondecreasing and continuous in the first variable. Furthermore, µ was assumed to be a Monge

- Ampère measure generaed by some bounded plurisubharmonic function and Ω is strictly pseu-

doconvex. A generalization to hyperconvex domains was made by Cegrell and Ko lodziej. There

assumption were that µ(Ω) < +∞ and µ vanishing on pluripolar sets, if 0 ≤ F (t, z) ≤ g(z) with

g ∈ L1(dµ) then for all f ∈ MPSH(Ω) ∩ E(Ω),Cegrell and Ko lodziej proved that equation (4.1)

has a solution u ∈ Fa(Ω, f).
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Late, Czyż investigated the equation (4.1) in the class N (Ω, f). He proved that if µ vanishes on

pluripolar sets of Ω, F is a continuous function of the first variable and bounded by an integrable

function for (−ϕ)µ which is independent of the first variable then the equation (1.1) is solvable

in the class N (Ω, f). More recently, under the same assumption that µ vanishes on all pluripolar

sets of Ω and there exists a subsolution v0 ∈ N a(Ω), i.e there exists a function v0 ∈ N a(Ω) such

that (ddcv0)n ≥ F (v0, .)dµ, Benelkourchi showed that (4.1) has a solution u ∈ N a(Ω, f).

In this note we want to study weak solutions of the equation (4.1) on class N (Ω, f) for an

arbitrary measure, in particular, for measures carried by a pluripolar set.

When solving the problems above, we had difficulties when µ is carried by a pluripolar set then hot

to solve the problems. To solve the problems, firstly, we find weak solutions for measures carried

by a pluripolar. Then we build a boundary type Perron - Bremerman plurisubharmonic functions

different from other authors to continue solving other parts. To be in more details, we will now

prove the main result of the chapter.

4.2 Equations of complex Monge-Ampère type for arbitrary measures

We achieve the result:

Theorem 4.2.1. Let Ω be a bounded hyperconvex domain and µ be a nonnegative measure in Ω.

Assume that F : R× Ω −→ (0,+∞) is a dt× dµ-measurable function such that:

(1) For all z ∈ Ω, the function t 7−→ F (t, z) is continuous and nondecreasing.

(2) For all t ∈ R, the function z 7−→ F (t, z) belongs to L1
loc(Ω, µ).

(3) There exists a function w ∈ N (Ω) such that (ddcw)n ≥ F (w, .)dµ.

Then for any maximal plurisubharmonic function f ∈ E(Ω) there exists u ∈ N (Ω, f) such that

u ≥ w and (ddcu)n = F (u, .)dµ in Ω.

We need the following.

Lemma 4.2.2. Let Ω, µ, F and w satisfy all the hypotheses of Theorem 4.2.1. Assume that

w ∈ N a(Ω), suppdµ b Ω, dµ(Ω) < ∞ and dµ vanishes on all pluripolar sets of Ω. If f ∈
E(Ω) ∩ MPSH(Ω) and v ∈ F(Ω, f) such that supp(ddcv)n b Ω and (ddcv)n is carried by a

pluripolar set of Ω, the function

u := (sup{ϕ ∈ E(Ω) : ϕ ≤ v and (ddcϕ)n ≥ F (ϕ, .)dµ})∗.

belongs to N (Ω, f) and (ddcu)n = F (u, .)dµ+ (ddcv)n in Ω.



Conclusions and recommendations

I.Conclusions

The thesis has attained the proposed research purposes. Its results help enrich subextension

of unbounded plurissubharmonic function in the class Eχ(Ω, f), F(Ω, f), Fm(Ω) with the control

over the weighted Monge - Ampère measure and the complex Hessian measure.

1) Successfully proved the existence of subextension in the class Eχ(Ω, f) in the case Ω is a bounded

hyperconvex domain in Cn and as well as indicated the equality χ(ũ)(ddcũ)n = 1Ωχ(u)(ddcu)n on

Ω̃.

2) Solved the subextension problem with answer for the class F(Ω, f) in the case Ω is an un-

bounded hyperconvex domain in Cn and denoted the equality of the weighted Monge - Ampère

mesure of subextension and of the given function.

3) Extended Hed’s result for approximattion of plurissubharmonic functions by an increasing se-

quence of plurissubharmonic functions defined on larger domains in the class F(Ω, f) in the case

Ω is an unbounded hyperconvex domain in Cn.

4) Proved the existence of subextension and the equality among complex Hessian measures for the

class Fm(Ω) in m - subharmonic functions.

5) Established the existence of weak solutions belonging to the class N (Ω, f) of equations of

complex Monge - Ampère type for arbitrary measures.

II. Recommendations

We suggest that in the near future, finding Holder continuous solutions for equations of

complex Monge - Ampère type to the complex Monge - Ampère and Hessian operator be one of

problems of interest and in need of being solved. We specially have to investigate this problem

for other larger subjects as compared to domains in Cn, such as those on the Kahler compact

variety or more generally, on Hermite varieties. There have been several achievements attained by

this direction for the time being, however, a complete answer for this direction of investigation is

expected to be far from reaching.
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